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Nonlinear stratified spin-up
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Both a weakly nonlinear analytic theory and direct numerical simulation are used to
document processes involved during the spin-up of a rotating stratified fluid driven
by wind-stress forcing for time periods less than a homogeneous spin-up time. The
strength of the wind forcing, characterized by the Rossby number ε, is small enough
(i.e. ε� 1) that a regular perturbation expansion in ε can be performed yet large
enough (more specifically, ε ∝ E1/2, where E is the Ekman number) that higher-
order effects of vertical diffusion and horizontal advection of momentum/density are
comparable in magnitude. Cases of strong stratification, where the Burger number S
is equal to one, with zero heat flux at the upper boundary are considered. The Ekman
transport calculated to O(ε) decreases with increasing absolute vorticity. In contrast
to nonlinear barotropic spin-up, vortex stretching in the interior is predominantly
linear, as vertical advection negates stretching of interior relative vorticity, yet is
driven by Ekman pumping modified by nonlinearity. As vertical vorticity is generated
during the spin-up of the fluid, the vertical vorticity feeds back on the Ekman
pumping/suction, enhancing pumping and vortex squashing while reducing suction
and vortex stretching. This feedback mechanism causes anticyclonic vorticity to grow
more rapidly than cyclonic vorticity. Strict application of the zero-heat-flux boundary
condition leads to the growth of a diffusive thermal boundary layer E−1/4 times
thicker than the Ekman layer embedded within it. In the Ekman layer, vertical
diffusion of heat balances horizontal advection of temperature by extracting heat
from the thermal boundary layer beneath. The flux of heat extracted from the top of
the thermal boundary layer by this mechanism is proportional to the product of the
Ekman transport and the horizontal gradient of the temperature at the surface. The
cooling caused by this heat flux generates density inversions and intensifies lateral
density gradients where the wind-stress curl is negative. These thermal gradients make
the potential vorticity strongly negative, conditioning the fluid for ensuing symmetric
instability which greatly modifies the spin-up process.

1. Introduction
Apart from buoyancy forcing, the major driving force for motions within the ocean

is the wind stress. Conversely, surface stress at the base of the atmosphere provides
the major retarding force for its circulation. In the presence of rotation, boundary
stress will drive, within the turbulent boundary layer, a net mass transport at right
angles to the stress. Divergences and convergences of this Ekman transport will
result if the surface stress has a curl. These divergences (convergences) pump fluid
out of (into) the interior of the fluid, setting up a secondary circulation. Despite the
weakness of this circulation, it has major consequences on the flow because of rotation
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and stratification. Due to the Coriolis force, the horizontal motions associated with
this circulation will continually accelerate a flow perpendicular to the secondary
circulation, while the vertical motions will advect the density field. This accelerative
process, termed stratified spin-up (SSU), is fundamental to geophysical flows and
has been studied extensively (Holton 1965a, b; Sakurai 1969; Walin 1969; Buzyna
& Veronis 1971; Allen 1973). Common to all of these analyses is the assumption
that the magnitude of the flow induced by this process is small enough so that
nonlinear advection of momentum and density is negligible, i.e. that the Rossby
number ε = U/(fL) (where U and L are scales for the magnitude and length of the
flow and f is the Coriolis parameter) is very small. For the case of the ocean forced
by a wind-stress curl constant in time, SSU generates interior-geostrophic flow in
the direction of the wind that grows linearly with time (Allen 1973). Hence, with
such forcing, the Rossby number continually increases, and at some time advection
of momentum and density by the secondary circulation cannot be neglected from
the dynamics of SSU. The assumption of linear dynamics of SSU theory then comes
into question. Previous theories of SSU fail to properly account for flux boundary
conditions on the density field at the top and bottom of the fluid. In this paper we use
a zero-heat-flux boundary condition so as to put the emphasis on mechanical versus
buoyancy-driven dynamics. We will show that correct application of zero-heat-flux
boundary conditions is crucial to both the thermodynamics and the dynamics of the
flow near the surface, for inversions and front-like features are manifested in the
density field, confounding the assumption of laminar hydrostatic nearly geostrophic
surface flow.

Since the secondary circulation is strongest in the Ekman layer, that is where
nonlinear effects should be intensified. How does advection of momentum modify the
dynamics in the Ekman layer? Although this issue has not been addressed in the
context of SSU, Stern (1965) and Niiler (1969) considered the nonlinear interaction
between the Ekman flow and a pre-existing geostrophic vortex and barotropic current
respectively. The approach of Stern was to use scale analysis, whereas Niiler explicitly
solved for the linearized wind-driven flow about a barotropic ocean current. Both
studies focused on the vertically integrated response of the flow in the Ekman layer,
concluding that the Ekman transport induced by a wind stress τ blowing in the
direction of the pre-existing flow is given by

Mnl =
τ

ρ(f + ζ)
, (1.1)

where ρ is the density, f is the Coriolis parameter, and ζ is the vertical component of
the relative vorticity associated with the pre-existing flow. Thus, for flows where the
Rossby number is significant, the Ekman transport varies inversely with the absolute
vorticity f + ζ rather than planetary vorticity f. The most striking consequence of
this result is that Ekman pumping/suction

wnl =
1

ρ(f + ζ)

∂τ

∂x
− τ

ρ(f + ζ)2

∂ζ

∂x
(1.2)

(where x is the coordinate perpendicular to the flow as well as the wind) can occur
even if the wind stress does not have a curl, as a result of spatial variations in the
vertical vorticity, i.e. the second term of (1.2). Generation of Ekman pumping by a
spatially uniform wind stress was investigated numerically in the study of Lee et al.
(1994), in which such a wind was applied to an oceanic current initially in geostrophic
balance. In contrast, our study uses a spatially varying wind stress, and hence both
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the first term in (1.2), which implies that Ekman pumping induced by the curl of the
wind stress is amplified (reduced) in regions of anticyclonic (cyclonic) vorticity, and
the second term in (1.2) will be active in the dynamics.

The dependence of the Ekman pumping on the vertical vorticity presents a coupling
between the Ekman layer and the flow in the interior of the ocean. We investigate
the effects of this coupling, horizontal advection of density by the Ekman flow, and
the vertical diffusion of density on the spin-up of a stratified fluid forced by a wind
stress varying sinusoidally in the direction perpendicular to the wind. This forcing is
used to highlight the fundamental differences between linear and nonlinear SSU. The
nonlinear analysis is accomplished by the use of a regular perturbation expansion in
orders of the Rossby number for all the flow variables. An analytical expression for
the second-order flow in the Ekman layer is calculated, from which its dependence
on the parameters involved (stratification, rotation, wind stress strength and length
scale) and the new features which nonlinearities bring to the solution (sharpening of
gradients, asymmetries, etc.) are determined explicitly. The pumping/suction induced
by the second-order flow is then used to drive a secondary circulation in the interior
whose effect is to accelerate a flow parallel to the wind. A solution for the density
field is derived which accounts for the no-heat-flux boundary conditions, horizontal
and vertical advection of density by the Ekman flow, and the distortion of interior
vertical advection by the second-order flow. A numerical experiment using a fully
nonlinear two-dimensional non-hydrostatic numerical model is performed to explore
the validity of, as well as extend, the analytical solution.

The outline of the paper is as follows. First, the formulation of the SSU problem
and description of the numerical model are given. Next, the details and failures of
classic SSU theory are presented in § 3. Following this, the method and solution of
the weakly nonlinear theory of SSU is described in § 4. The paper is concluded with
a discussion in § 5.

2. Formulation
2.1. Basic equations

The basic equations governing motion of an incompressible Boussinesq fluid on an
f-plane rotating about the vertical axis with an angular velocity of Ω = f/2 are

∇ · q = 0, (2.1)

∂q

∂t
+ q · ∇q + fk̂ × q =

−∇p
ρo
− ρ

ρo
gk̂ + κ∇2q, (2.2)

∂T

∂t
+ q · ∇T = κd∇2T , (2.3)

ρ = ρo(1− α(T − To)), (2.4)

where q = (u, v, w), p, ρ and T are respectively the velocity, pressure, density and
temperature of the fluid. We assume that the fields are invariant in one lateral
direction so all variables are only functions of the horizontal and vertical position
(x, z) as well as the time t. The diffusivities of momentum and heat are denoted by

κ and κd respectively, and −gk̂ is the gravitational acceleration with k̂ indicating the
vertical unit vector. The linearized equation of state of the fluid is given in (2.4) with
α being the thermal expansion coefficient, and ρo indicating the density at a reference
temperature To.
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We assume the undisturbed fluid to have a uniform stable stratification: Tb =
∆T (z/H)+To with buoyancy frequency N =

√
αg∆T/H , where ∆T is the background

temperature difference imposed across the fluid depth H .
The equations are non-dimensionalized by scaling the variables in the following

way:

x = Lx′, z = Hz′, t = τht
′,

u = Uu′, v = Uv′, w = (UH/L)w′,

p = pb + (UfLρo)p
′, T = ∆T [z/H + (ε/S)T ′],

where L is a characteristic horizontal length scale, U is a characteristic horizontal
velocity, pb is the hydrostatic background pressure associated with the background
temperature field, ε = U/(fL) is the Rossby number and S = N2H2/(f2L2) is the
Burger number representing the ratio of the square of the Rossby radius of de-
formation Lr = NH/f to the square of the characteristic length scale L. Following
earlier work on stratified spin-up (Sakurai 1969; Buzyna & Veronis 1971; Allen 1973),
we scale time in terms of the spin-up time of a homogeneous fluid τh = E−1/2f−1

(Greenspan & Howard 1963), where E = 2κ/(fH2) is the Ekman number. This change
of variable effectively filters out inertial oscillations as well as the temporal develop-
ment of the flow in the Ekman layer, processes which occur over an inertial period
(i.e. τi = 2πf−1) and which are not the focus of this study, but will nonetheless appear
in the numerical simulation.

The motion of the fluid is driven by a wind stress τ with a magnitude τo applied
at the surface in the y-direction. It is anticipated that this wind stress will induce an
Ekman transport to the right of itself with a magnitude M = τo/(ρof). This transport

is distributed across the thickness of the Ekman layer δe =
√

2κ/f. Knowing this we
can estimate the characteristic horizontal velocity to be U = τo/(ρofδe).

The dimensionless equations are (dropping the primes):

∂u

∂x
+
∂w

∂z
= 0, (2.5)

E1/2 ∂u

∂t
+ ε

(
u
∂u

∂x
+ w

∂u

∂z

)
− v = −∂p

∂x
+
E

2

(
∂2u

∂z2
+

1

Γ

∂2u

∂x2

)
, (2.6)

E1/2 ∂v

∂t
+ ε

(
u
∂v

∂x
+ w

∂v

∂z

)
+ u =

E

2

(
∂2v

∂z2
+

1

Γ

∂2v

∂x2

)
, (2.7)

E1/2 ∂w

∂t
+ ε

(
u
∂w

∂x
+ w

∂w

∂z

)
= Γ

(
−∂p
∂z

+ T

)
+
E

2

(
∂2w

∂z2
+

1

Γ

∂2w

∂x2

)
, (2.8)

E1/2 ∂T

∂t
+ ε

(
u
∂T

∂x
+ w

∂T

∂z

)
+ Sw =

E

2σ

(
∂2T

∂z2
+

1

Γ

∂2T

∂x2

)
, (2.9)

where Γ = (L/H)2 is the square of the aspect ratio and σ = κ/κd is the Prandtl
number.

2.2. Boundary conditions, initial conditions, and forcing

The fluid is unbounded in the x-direction and is capped at z = 1 with a thermally
insulated rigid boundary along which the wind stress is applied. The bottom boundary
at z = 0 is an insulated no-slip wall. At t = 0 the wind stress is turned on impulsively.
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This leads to the following boundary conditions on the dimensionless variables:

u = v = w = 0 at z = 0, (2.10)

1 +
ε

S

∂T

∂z
= 0 at z = 0, 1, (2.11)

w =
∂u

∂z
= 0,

∂v

∂z
= 2E−1/2τ at z = 1 (t > 0). (2.12)

The form of the boundary condition for the temperature (2.11) ensures that the sum
of the heat flux due to the background stratification and the temperature perturbation
is zero at the horizontal boundaries.

We investigate the response of an initially motionless uniformly stratified rotating
fluid to a wind stress that varies sinusoidally in the x-direction. The wavelength of
this sinusoid is the characteristic length L. The initial conditions and form of the
wind stress are as follows:

u = v = w = T = 0 at t = 0, (2.13)

τ = cos(2πx). (2.14)

We are interested in how nonlinear advection of momentum and temperature affect
the spin-up of the fluid. Because of this, we consider cases where the Rossby number of
the wind-driven flow ε is small yet large enough so that the effects of vertical diffusion
and horizontal advection of momentum/density are comparable in magnitude. More
specifically we assume that:

E1/2 = γε, (2.15)

Γ � 1, (2.16)

S ∼ 1, (2.17)

σ = 1, (2.18)

where γ is a proportionality constant of order-one. We restrict our analysis to time-
scales of order a homogeneous spin-up time, i.e. t = O(1).

2.3. Numerical model

Once the analytical solution using the above-mentioned approximations is found, we
will explore its validity using a nonlinear two-dimensional non-hydrostatic numerical
model. The model integrates the following equations forward in time:

∂v

∂t
+ u

∂v

∂x
+ w

∂v

∂z
+ fu = κv

∂2v

∂z2
+ κh

∂2v

∂x2
, (2.19)

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
=

1

σ

(
κv
∂2T

∂z2
+ κh

∂2T

∂x2

)
, (2.20)

∂χ

∂t
+ u

∂χ

∂x
+ w

∂χ

∂z
= f

∂v

∂z
− gα∂T

∂x
+ κv

∂2χ

∂z2
+ κh

∂2χ

∂x2
, (2.21)

where u = ∂ψ/∂z, w = −∂ψ/∂x, ψ is a stream function, and χ = ∇2ψ is the y-
component of the vorticity. The notation used in the equations above is the same as
that used previously in the text, apart from the vertical and horizontal diffusivities
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L (m) 5.0× 104

H(m) 1.0× 103

τo(N m−2) 1.0× 10−1

N(s−1) 5.0× 10−3

f (s−1) 1.0× 10−4

κv(m
2 s−1) 5.0× 10−3

κh(m
2 s−1) 5.0

σ 1.0
ε 2.0× 10−2

S 1.0
E 1.0× 10−4

Table 1. The physical and non-dimensional parameters used in the numerical experiment and the
analytical solution.

of momentum, κv and κh respectively, which are not necessarily the same in the
numerical model. The physical and non-dimensional parameters used in the numerical
experiment are listed in table 1.

The model uses a staggered grid with the temperature and the y-component of the
velocity defined at the centre of the grid, u and w defined at the centre of the vertical
and horizontal sides of the grid respectively, and χ at the corners of the grid. The
horizontal and vertical grid spacing were ∆x = 100 m and ∆z = 3.9 m respectively.
The vertical grid spacing was designed to be fine enough to resolve the Ekman layers.
Boundary conditions on the upper and lower surfaces are the dimensional form of
(2.10), (2.11) and (2.12). The width of the domain is equal to the wavelength of the
wind forcing, i.e. L, and at x = −L/2 and x = L/2 the boundary conditions are
periodic.

3. Linear stratified spin-up
3.1. Classical stratified spin-up theory

We now summarize the stress-driven stratified spin-up theory of Allen (1973) in which
the assumptions ε = 0 and E � 1 were used. Within an inertial period, wind stress
applied at the surface generates cross-wind and vertical flow in a thin Ekman layer.
The equations governing this flow are

1

2

∂2ue

∂η2
+ ve = 0, (3.1)

1

2

∂2ve

∂η2
− ue = 0, (3.2)

where η = (1 − z)/E1/2 is the stretched vertical coordinate in the Ekman layer near
z = 1 and the subscript e denotes an Ekman-layer variable. The solution to (3.1) and
(3.2) subject to the boundary conditions ∂ve/∂η = −2 cos(2πx) and ∂ue/∂η = 0, as
represented by a stream function is

ψe = e−n cos(η) cos(2πx), (3.3)

where the stream function is related to the cross-wind and vertical velocities by

(ue, we) = (−∂ψe/∂η, −E1/2∂ψe/∂x). (3.4)
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Convergence (divergence) of the cross-wind flow pumps fluid into (out of) the interior
of the fluid, outside the Ekman layer. This sets up an interior secondary circulation
in the (x, z)-plane

(ui, wi) = E1/2(∂ψi/∂z,−∂ψi/∂x) (3.5)

(subscript i denotes an interior flow quantity) of strength O(E1/2). Setting ε = 0,
collecting terms in equations (2.6)–(2.9) of like order in Ekman number, and utilizing
(2.16) yields the equations governing the interior-flow variables:

∂vi

∂z
− ∂Ti

∂x
= 0, (3.6)

∂vi

∂t
+
∂ψi

∂z
= 0, (3.7)

∂Ti

∂t
− S ∂ψi

∂x
= 0. (3.8)

Eliminating vi and Ti yields the following equation for ψi:

∂2ψi

∂z2
+ S

∂2ψi

∂x2
= 0. (3.9)

The no-normal-flow conditions (2.10) and (2.12) set the boundary conditions for ψi:

ψi = −ψe at z = 1, (3.10)

∂ψi

∂t
=

1

2

∂ψi

∂z
at z = 0. (3.11)

The solution to (3.9) subject to (3.10) and (3.11), as derived by Allen (1973) is

ψi = −
{

sinh(λz)

sinh(λ)
e−βt +

cosh(λz)

cosh(λ)
[1− e−βt]

}
cos(2πx) (3.12)

with λ = 2π
√
S and β = λ coth(λ)/2. Note that because of the constraining effects of

stratification, this O(E1/2) secondary circulation is concentrated near the surface in a
layer of order a Prandtl depth, δs = H/λ, thick. Integrating (3.7) and (3.8) and using
the initial conditions (2.13), the solutions for vi and Ti are

vi = λ

{
cosh(λz)

β sinh(λ)
[1− e−βt] +

sinh(λz)

cosh(λ)

[
t− 1

β
[1− e−βt]

]}
cos(2πx), (3.13)

Ti = 2πS

{
sinh(λz)

β sinh(λ)
[1− e−βt] +

cosh(λz)

cosh(λ)

[
t− 1

β
[1− e−βt]

]}
sin(2πx). (3.14)

A crucial feature of these solutions is that they have terms which grow linearly with
t. As a consequence of this secular growth, at some time the effects of advection of
momentum and density by the secondary circulation will not be negligibly small, at
which point these linear solutions will fail to accurately describe the SSU process.

3.2. Shortcomings of classical stratified spin-up theory

To obtain a qualitative sense of the limitations of classical stratified spin-up theory, we
contrast the classical SSU solutions for the temperature, stream function, and down-
wind velocity near the surface with those from the numerical simulation (figures 1
and 2). The parameters used in the numerical simulation are listed in table 1. Both the
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Figure 1. The numerical (a–c), classical linear SSU (d–f ), and nonlinear SSU (g–i ) solutions for
the temperature and stream function (white contours) evaluated at t = 0.10 (upper row), t = 0.31
(middle row), and t = 0.54 (lower row). The nonlinear SSU solutions are valid to O(ε). A schematic
of the wind-stress forcing is plotted at the top of each column.

numerical and classical SSU solutions for the stream function show the basic structure
of intensified cross-wind flow in the upper Ekman layer, upwelling/downwelling at
the maximum/minimum wind stress curl, and a weak interior secondary circulation
that decays with depth. Notice that, unlike the classical SSU solution, the maximum
and minimum values of the stream function of the numerical simulation are not
located directly underneath the maximum and minimum wind stress, but are displaced
towards the location of the minimum wind-stress curl. Like the stream function, the
temperature field of both solutions shows similarities in the basic structure of warmer
downwelled water to the right of x = 0 and cooler upwelled water to the left. However,
the spatial structure and magnitudes of the two solutions are quite different. Within
and beneath the Ekman layer, the spatial structure of the temperature field of
the numerical model consists of steepened, vertical, or inverted isotherms near the
surface, and a complex lateral structure with intensified horizontal gradients near
x = 0.25, features that are absent from the classical SSU solution. Also notice that
the temperature of the classical SSU solution exceeds the maximum temperature
of the initial stratification even though there are no sources of heat; the numerical
simulation does not develop this artefact. Like the stream function, the down-wind
velocity of both solutions plotted in figure 2 is surface intensified and decays with
depth as a consequence of the stratification. Another similarity between the stream
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Figure 2. The numerical (a–c), classical linear SSU (d–f ), and nonlinear SSU (g–i ) solution for the
down-wind velocity, non-dimensionalized by U, evaluated at t = 0.10 (upper row), t = 0.31 (middle
row), and t = 0.54 (lower row). The nonlinear SSU solution is valid to O(ε). A schematic of the
wind-stress forcing is plotted at the top of each column.

function and the down-wind velocity is that its maximum and minimum are shifted
towards x = 0.25. The sinusoidal lateral structure of the classical SSU solution (3.13)
cannot duplicate this feature. These failures of the classic SSU solution result from
the disregard of horizontal advection of momentum/density and from the lack of a
proper thermal boundary condition used in the theory. In this section, we will show
that both of these deficiencies are significant, especially for the parameter range of
this study (see table 1 as well as conditions (2.15) and (2.17)).

It is instructive to use the classical SSU solutions to estimate the strength of
nonlinear advection of momentum in the Ekman layer (which is E−1/2 times larger
than advection of momentum by the interior secondary circulation). Using (3.3)
and (3.13) the horizontal advection of y-momentum in the Ekman layer scales like
εue∂vi/∂x ∼ 2πλεt. Evaluating this estimate based on the parameters in table 1:
for t = 0.31 εue∂vi/∂x ∼ 0.25, which is a fourth of the magnitude of the unit-scale
Coriolis force. Hence, at this time, the neglect of the nonlinear advection of momentum
in classical SSU theory should lead to significant differences between the classical
SSU solutions and the fully nonlinear numerical solutions. Indeed, at this time the
numerical solution for the velocity in the y-direction takes the form of a steepened
sinusoid unlike the pure sinusoidal shape of vi (figure 3a). The numerical solution of
the temperature field likewise is not a simple sinusoid, taking an asymmetric form
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Figure 3. Lateral structure of the numerical (solid) and classical linear SSU (dashed) solutions for
the down-wind velocity v (a) and the deviation of the temperature from the background uniform
stratification T − Tb (b) evaluated at z = 0.982 and t = 0.31. T − Tb is non-dimensionalized by
S∆T/ε.

about x = 0. The distortion of the lateral structure of the numerical solutions from
that of the classical SSU solutions evident in figure 3 is attributable to horizontal
advection of momentum and temperature, which we will show quantitatively in § 4.
Also notice that the horizontal average of the temperature field of the numerical model
is non-zero, unlike the analytic solution. This non-zero lateral mean is attributable to
the diffusion of the insulating boundary condition (2.11) into the fluid.

Even if no wind stress is applied to the stratified fluid, the temperature field will
change with time near the horizontal boundaries since the background temperature
field itself does not satisfy the insulating boundary conditions. Near these horizontal
boundaries, thermal diffusion diminishes the stratification, generating growing thermal
boundary layers of thickness δT =

√
(κ/σ)τht = HE1/4

√
t/(2σ), which for t ∼ 1 are

E−1/4 times thicker than the Ekman layers. These thermal boundary layers are clearly
seen near the top and bottom of the domain in the vertical profile of the numerical
solution of T − Tb (figure 4). Notice that the magnitude of the deviation of the
numerical model solution from the analytic solution is larger near z = 1 than z = 0.
Since the secondary circulation is intensified near the surface, this asymmetry suggests
that advection of temperature as well as diffusion plays a role in determining the
structure of the temperature field in the thermal boundary layer.

From these comparisons between the classical SSU solutions and the numerical
solutions we conclude that a proper theory of stratified spin-up must account for
nonlinear advection of momentum and temperature and include a thermal boundary
layer.
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Figure 4. Vertical profiles of the numerical (solid) and classical SSU (dashed) solutions for the
down-wind velocity evaluated at x = 0 (a), and T − Tb evaluated at x = 0.25 (b). Both quantities
are plotted at t = 0.31. Arrows indicate five times the thickness of the Ekman layer δe, the thermal
boundary layer δT , and the Prandtl depth δS .

4. Nonlinear stratified spin-up theory
Similar to classical SSU theory, we split the dependent variables into interior and

Ekman layer parts; we also include a thermal boundary layer. For example the
down-wind velocity is decomposed as follows: v = ve + vT + vi, where the subscript
T denotes a thermal-boundary-layer variable. Although there are thermal boundary
layers both at the top and bottom of the fluid layer, we will focus our analysis on
the top layer where the secondary circulation and hence advection is much stronger.
In this boundary layer, the variables are functions of the following stretched vertical
coordinate: ξ = (1− z)/E1/4.

The theory uses a regular perturbation expansion in orders of the Rossby number.
Because of (2.15), the Rossby number plays three roles in the expansions of the
flow variables: it allows for a weakly nonlinear analysis, accounts for diffusion, and
scales variables in the horizontal boundary layers according to the thickness of their
respective boundary layers. Quantities in the Ekman layers are expanded in powers
of ε1/2:

ψe =

∞∑
n=0

εn/2ψ(n)
e , ve =

∞∑
n=0

εn/2v(n)
e , Te =

∞∑
n=0

εn/2T (n)
e . (4.1)

Similar expansions are applied in the interior region

ψi =

∞∑
n=0

εn/2ψ
(n)
i , vi =

∞∑
n=0

εn/2v
(n)
i , Ti =

∞∑
n=0

εn/2T
(n)
i , (4.2)
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while the thermal-boundary-layer variables are expanded as follows:

ψT = ε

∞∑
n=0

εn/2ψ
(n)
T , vT = ε1/2

∞∑
n=0

εn/2v
(n)
T , TT = ε−1/2

∞∑
n=0

εn/2T
(n)
T . (4.3)

The Ekman layer and interior stream functions are related to the cross-wind and
vertical velocities by (3.4) and (3.5), whereas in the thermal boundary layer they are
connected through

(uT , wT ) = −E1/2(E−1/4∂ψT/∂ξ, ∂ψT/∂x). (4.4)

The logic behind the scaling of the thermal-boundary-layer variables will be explained
in §§ 4.2 and 4.3.

The governing equations for the expanded variables are obtained by substituting
(4.1), (4.2) and (4.3) into (2.6)–(2.9), using (2.15), noting that ∂/∂z = −(γε)−1/2∂/∂ξ =
−(γε)−1∂/∂η, and collecting terms of like order in Rossby number.

4.1. O(1) solutions in the interior and Ekman layer

The O(1) solutions in the interior and Ekman layer are identical to the classical
SSU solutions described in § 3.1. That is, ψ(0)

e is given by (3.3), ψ(0)
i by (3.12), v(0)

i by

(3.13), and T
(0)
i by (3.14). The temperature equation in the Ekman layer to O(1) is

∂2T (0)
e /∂η2 = 0, the solution of which is T (0)

e = aη+b. For non-zero values of a and b,
this solution does not meet the requirement that T (0)

e → 0 as η → ∞. Thus, the only
permissible solution for the temperature field to O(1) in the Ekman layer is T (0)

e = 0.

4.2. O(ε−1/2) and O(1) temperature correction in the thermal boundary layer

The heat-flux boundary condition (2.11), rewritten in terms of the interior, thermal
and Ekman layer temperature fields is

∂TT

∂ξ
= ε−1/2Sγ1/2 − ε−1/2γ−1/2 ∂Te

∂η
+ ε1/2γ1/2 ∂Ti

∂z
. (4.5)

Since the O(1) temperature field in the Ekman layer is zero and therefore does not
affect (4.5), an O(ε−1/2) correction to the temperature in the thermal boundary layer
is needed to cancel the heat flux of the background temperature field at z = 1. The
governing equation and boundary condition for T (0)

T is

∂T
(0)
T

∂t
− 1

2

∂2T
(0)
T

∂ξ2
= 0, (4.6)

∂T
(0)
T

∂ξ
= Sγ1/2 at ξ = 0. (4.7)

Notice that the Prandtl number has not been explicitly included in (4.6) since it is
equal to one. For the remainder of the paper the Prandtl number will be dropped
from all forms of the temperature equation. The solution to the diffusion equation
(4.6) subject to (4.7) is

T
(0)
T = −√2tSγ1/2i erfc

(
ξ√
2t

)
, (4.8)

where

i erfc(ξ/
√

2t) =

∫ ∞
ξ/
√

2t

erfc(s) ds

is the first repeated integral of the error function (Abramowitz & Stegun 1972).
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The O(1) temperature equation is

∂T
(1)
T

∂t
− 1

2

∂2T
(1)
T

∂ξ2
= − 1

γ1/2

(
∂ψ

(0)
i

∂x

∣∣∣∣
z=1

)
∂T

(0)
T

∂ξ
, (4.9)

which is a diffusion equation forced by the vertical advection of the O(ε−1/2) tempera-
ture field by the interior vertical velocity. The interior vertical velocity is approximated
by its value at the surface. The variation of the interior vertical velocity across the
relatively thin thermal boundary layer is at most O(ε1/2) and therefore is neglected at
this level in the regular perturbation expansion.

The boundary condition on T
(1)
T is determined from the O(ε1/2) correction to the

temperature in the Ekman layer, which satisfies the equation ∂2T (1)
e /∂η2 = 0. Since

T (1)
e = 0, it follows from (4.5) that

∂T
(1)
T

∂ξ
= 0 at ξ = 0. (4.10)

The solution to (4.9) subject to (4.10) is

T
(1)
T = −2πS

[
ξ
√

2t i erfc

(
ξ√
2t

)
+ 2ti2 erfc

(
ξ√
2t

)]
sin(2πx), (4.11)

where

i2 erfc(ξ/
√

2t) =

∫ ∞
ξ/
√

2t

i erfc(s) ds.

Including the O(1) corrections to the temperature field in the thermal boundary layer
greatly improves the solution relative to the classical SSU solution (i.e. compare fig-
ures 5(a) and the lower panel of figure 3(b) as well as figure 5(d ) and the right panel of
figure 4(b)). It improves the solution by capturing the non-zero negative lateral mean
and the reduced peak-to-peak amplitude. To obtain a quantitative calculation of the
amount by which the peak-to-peak amplitude is reduced, (4.11) was evaluated at ξ = 0
and added to the O(1) interior temperature field: T (1)

T |ξ=0 + T
(0)
i |z=1 = πSt sin(2πx).

This calculation reveals that the temperature to O(1) still grows secularly at the surface
yet its amplitude is reduced by half. The reduction of amplitude of the O(1) tempera-
ture field is a consequence of the diminished effective background stratification in the
thermal boundary layer, i.e. dTb/dz − ∆T/(HSγ1/2)∂T (0)

T /∂ξ = (∆T/H) erf(ξ/
√

2t).
As the effective background stratification diffuses away, the vertical advection of tem-
perature must decrease, hence reducing advective warming and cooling. This result,
which is ultimately attributable to the flux boundary condition on the temperature
field, affects both the thermodynamics of the spin-up process and the dynamics of
the down-wind velocity.

4.3. O(ε1/2) down-wind velocity corrections in the thermal boundary layer

The pressure in the thermal boundary layer pT can be written in terms of the
temperature via the hydrostatic relation

∂pT

∂ξ
= −(γε)1/2(ε−1/2T

(0)
T + T

(1)
T + · · ·). (4.12)

Using (4.12) to scale the pressure-gradient force in the x-direction, it is clear that
the magnitude of this force is at most O(ε1/2), since T (0)

T is independent of x. In the
thermal boundary layer, the scale of the acceleration, advection, and vertical diffusion
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Figure 5. The nonlinear SSU solution for T − Tb valid to O(1) (dashed), i.e.

T (1) ≡ ε−1/2T
(0)
T + T

(1)
T + T

(0)
i , compared to the numerical solution (solid) for t = 0.31. The lat-

eral structure of T − Tb is plotted for (a) z = 0.982, (b) z = 0.955, and (c) z = 0.815. (d ) Vertical
profile of T − Tb at x = 0.25.

terms in the x-momentum equation (2.6) is less than O(ε). Therefore, a geostrophic
O(ε1/2) down-wind velocity is required to balance the pressure-gradient force in the

thermal boundary layer. Once T (1)
T is known, this geostrophic flow can be calculated

by vertically integrating the thermal-wind relation:

1

γ1/2

∂v
(0)
T

∂ξ
= −∂T

(1)
T

∂x
, (4.13)

noting that v(0)
T → 0 as ξ → ∞. Using (4.11), the thermal-wind relation (4.13) yields

the following solution:

v
(0)
T = −8π2γ1/2S

[
ξti2 erfc

(
ξ√
2t

)
+ (2t)3/2i3 erfc

(
ξ√
2t

)]
cos(2πx), (4.14)

where

i3 erfc(ξ/
√

2t) =

∫ ∞
ξ/
√

2t

i2 erfc(s) ds.

Throughout the thermal boundary layer, the amplitude of the down-wind velocity
and its vertical shear is reduced relative to the classical SSU solution (compare
figure 6d to figure 4a), drastically improving the vertical and lateral structure of the
analytic solution. Hence, the thermal-boundary-layer temperature field is necessary
for an accurate analytic solution of the down-wind velocity.
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Figure 6. The nonlinear SSU solution for the down-wind velocity v valid to O(ε1/2) (dashed),
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i + ε1/2v

(0)
T , compared to the numerical solution (solid) for t = 0.31. The lateral

structure of v is plotted for (a) z = 0.982, (b) z = 0.955, and (c) z = 0.815. (d ) Vertical profile of v
at x = 0.

4.4. O(ε) solutions in the Ekman layer

The O(ε) velocities in the upper Ekman layer are forced by horizontal and vertical
advection of the O(1) momentum. We restrict our weakly nonlinear analysis to the
upper Ekman layer and neglect nonlinear dynamics in the bottom Ekman layer. This
is justifiable for Burger numbers of order-one, since the stratification considerably
weakens the interior flow near the bottom. A nonlinear analysis of the bottom Ekman
layer in a homogeneous fluid has most recently been done by Hart (2000), who
analytically derived high-order corrections in Rossby number to the Ekman-pumping
formula for a given interior geostrophic flow.

The second-order momentum equations in the top Ekman layer are

1

2

∂2u(2)
e

∂η2
+ v(2)

e = Fx (4.15)

1

2

∂2v(2)
e

∂η2
− u(2)

e = Fy, (4.16)

where

Fx = u(0)
e

∂u(0)
e

∂x
+

∂

∂x
(ψ(0)

e + ψ
(0)
i |z=1)

∂u(0)
e

∂η
, (4.17)

Fy = u(0)
e

(
∂v(0)

e

∂x
+
∂v

(0)
i

∂x

∣∣∣∣
z=1

)
+

∂

∂x
(ψ(0)

e + ψ
(0)
i |z=1)

∂v(0)
e

∂η
(4.18)
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are the expressions for the divergence of the first-order x and y advective momentum
fluxes within the top Ekman layer. Notice that they include terms involving interior
quantities. These quantities are evaluated at z = 1 because their variation over the
thin Ekman layer is negligible. By differentiating equation (4.15) twice with respect
to the vertical coordinate, v(2)

e can be eliminated from equation (4.16) yielding the
following equation for u(2)

e :

∂4u(2)
e

∂η4
+ 4u(2)

e = 2
∂2Fx

∂η2
− 4Fy. (4.19)

The stress boundary conditions at z = 1 for the O(ε) velocities in the Ekman layer
are

∂v(2)
e

∂η
= −2τg at z = 1, (4.20)

∂u(2)
e

∂η
= 0 at z = 1, (4.21)

where we have introduced a ‘geostrophic stress’

τg = −γ
2

(
∂v

(0)
i

∂z

∣∣∣∣
z=1

− 1

γ1/2

∂v
(0)
T

∂ξ

∣∣∣∣
ξ=0

)
(4.22)

to correct for the geostrophic shear at the surface. Since the vertical structure of the
terms on the right-hand side of (4.19) take the form of the real part of complex
exponentials (i.e. Re(eaη) where a is a complex number), an analytic expression for
u(2)
e is easily obtained. Once this is done, u(2)

e can be integrated with respect to η to
yield ψ(2)

e :

ψ(2)
e = − 1

4
{ηe−η[cos(η) + sin(η)] + 4e−η cos(η)} cos(2πx)

∂v
(0)
i

∂x

∣∣∣∣
z=1

−π[ 3
10

e−2η − ηe−η cos(η) + 8
5
e−η sin(η)− 4

5
e−η cos(η)] sin(4πx)

−γ
2

(
∂v

(0)
i

∂z

∣∣∣∣
z=1

− 1

γ1/2

∂v
(0)
T

∂ξ

∣∣∣∣
ξ=0

)
e−η cos(η). (4.23)

By definition, the Ekman transport is equal to the Ekman-layer stream function
evaluated at η = 0. Using (4.23), the dimensional Ekman transport including the O(ε)
correction becomes

M =
τo

ρf
(ψ(0)

e |η=0 + εψ(2)
e |η=0 + · · ·)

=
τo

ρf
cos(2πx)

1− ε∂v
(0)
i

∂x

∣∣∣∣
z=1︸ ︷︷ ︸

vort

+ επ sin(2πx)︸ ︷︷ ︸
steady

+

(
τo

ρf

)
E1/2τg︸ ︷︷ ︸

gstress

+ · · · . (4.24)

Comparing this result to that of Stern (1965) and Niiler (1969), (1.1), it is clear that
the first two terms in (4.24) are identical to the first two terms of an expansion in ζ/f
of Mnl if the vertical vorticity used in (1.1) is calculated from the interior down-wind
flow. The steady term in (4.24) arises from horizontal and vertical advection of the
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momentum of the flow in the Ekman layer and is constant in time. The gstress term
in (4.24) illustrates the way in which the flow in the Ekman layer responds to the
‘geostrophic stress’ in a completely analogous fashion as to the wind stress.

Notice that the Ekman transport is enhanced (reduced) where the interior vertical
vorticity is anticyclonic (cyclonic). To gain physical insight into this feature of the
solution, it is beneficial to look at the equation governing the x-component, ωx =
∂ve/∂η, of the relative vorticity in the Ekman layer. To single out the physics involving
the interior vorticity term in (4.24), only the term involving the advection of vi will
be considered. Also, since we are interested in the dynamics in the thin Ekman layer,
the vertical variation of the vertical vorticity as well as horizontal diffusion will be
neglected. The approximate equation for ωx is(

1 + ε
∂vi

∂x

∣∣∣∣
z=1

)
∂ue

∂η
=

1

2

∂2ωx

∂η2
. (4.25)

The physics behind this equation is best described in terms of tilting of vorticity.
By including the nonlinear term in the equation, the tilting of absolute rather than
planetary vorticity replenishes frictional twisting, which dissipates ωx. Because of this,
the shear in the Ekman layer must be enhanced in regions of anticyclonic vorticity
so that the tilting of the diminished absolute vorticity can balance the dissipation.

4.5. O(ε) stream function in the thermal boundary layer

The O(ε) stream function is a residual circulation that allows v(0)
T to satisfy both the

thermal-wind relation (4.13) and the y-momentum equation in the thermal boundary
layer:

∂v
(0)
T

∂t
− 1

2

∂2v
(0)
T

∂ξ2
=

1

γ1/2

∂ψ
(0)
T

∂ξ
. (4.26)

A single equation for ψ(0)
T can be obtained using the thermal-wind relation (4.13) and

the equation for the O(1) thermal-boundary-layer temperature field (4.9):

∂2ψ
(0)
T

∂ξ2
− γ1/2

(
∂2ψ

(0)
i

∂x2

∣∣∣∣
z=1

)
∂T

(0)
T

∂ξ
= 0. (4.27)

Notice that this equation for the thermal-boundary-layer stream function resembles
the equation governing ψ

(0)
i (3.9). This similarity sheds light on the physical inter-

pretation of the O(ε) thermal-boundary-layer steam function. In physical terms, both
(4.27) and (3.9) state that laterally varying vertical advection of density must be com-
pensated by vertically sheared Coriolis acceleration so that the spun-up down-wind
flow remains in a thermal-wind balance. Since the stratification and hence the vertical
advection of density is diminished in the thermal boundary layer as a consequence of
the insulating boundary condition, the Coriolis acceleration and thus the cross-wind
flow must be reduced in this boundary layer as well. The solution to (4.27), noting
that ψ(0)

T → 0 as ξ →∞, is

ψ
(0)
T = 8π2Sγti2 erfc

(
ξ√
2t

)
cos(2πx), (4.28)

which yields a cross-wind flow everywhere to the right of the wind stress and generates
a Coriolis acceleration opposite to that of the interior O(1) secondary circulation.
This weakening of the Coriolis force by ψ(0)

T is responsible for the reduced amplitude
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Figure 7. The sum of the O(ε) cross-wind transport in the Ekman and thermal boundary layers
(thick solid) and its constituents evaluated at t = 0.31. The constituents include the steady (dotted),
vort (dashed), and gstress (dash-dotted) terms, see (4.24), as well as the thermal-boundary-layer
transport (thin solid).

of the O(ε1/2) down-wind velocity relative to the classical SSU solution illustrated in
figure 6.

4.6. O(ε) correction to the stream function in the interior

To satisfy the no-normal-flow boundary condition at the surface, the interior vertical
velocity must be equal and opposite to the suction/pumping of fluid out of both the
Ekman and thermal boundary layers. This requirement sets the boundary condition
for the O(ε) correction to the interior stream function, ψ(2)

i , at the surface:

ψ
(2)
i = −ψ(2)

e − ψ(0)
T at z = 1. (4.29)

Using the definitions for the Ekman transport and the total cross-wind transport of
fluid across the thermal boundary layer,

MT ≡
∫ ∞

0

(−∂ψT/∂ξ) dξ = ψT |ξ=0,

it is clear that ψ(2)
i is equal to the negative of the sum of the cross-wind transport in

the Ekman and thermal boundary layers. The sum of these transports primarily fol-
lows the vort term of (4.24), yet is distorted by both the Ekman transport associated
with the ‘geostrophic stress’ and the thermal-boundary-layer transport (figure 7). No-
tice that while the Ekman pumping/suction associated with the ‘geostrophic stress’
is counter to the Ekman pumping/suction of the O(1) solution (3.3), the pump-
ing/suction associated with the thermal-boundary-layer transport augments that of
the O(1) solution. Since the pumping/suction associated with the thermal-boundary-
layer transport is larger in magnitude than that of the ‘geostrophic stress’ (i.e. compare
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the amplitudes of the thin-solid and dash-dotted curves in the figure), the net effect of
these transports (which arise from diffusive rather than nonlinear dynamics and hence
would be retained in a purely linear analysis) is to accelerate the spin-up process in
the interior of the fluid. This result is a consequence of the flux boundary condition
on the temperature field and thus depends on the value of the heat flux at the surface.
In fact, it can be shown that if heat is inputted to the fluid at the surface, depending
on the strength of the heat flux, the cross-wind transport in the thermal boundary
layer will be reduced or even reversed from its value obtained using the insulating
boundary condition (2.11). This illustrates the importance of the heat-flux boundary
condition on the mechanics of SSU and on the secondary circulation in the interior.

The second-order correction to the stream function in the interior is governed by
the following equation:

∂2ψ
(2)
i

∂z2
+ S

∂2ψ
(2)
i

∂x2
= 2J

(
v

(0)
i ,

∂ψ
(0)
i

∂z

)
, (4.30)

where J is the Jacobian operator, and is subject to (4.29) and

∂ψ
(2)
i

∂t
=

1

2

∂ψ
(2)
i

∂z
at z = 0. (4.31)

Equation (4.30) can be solved by splitting ψ
(2)
i into a particular ψp solution and a

homogeneous solution ψh. The particular solution to (4.30) is

ψp =
πλ

sinh(2λ)

{
(1− e−βt)2

β
− e−βt

[
t− (1− e−βt)

β

]}(
1 +

λ

2
ze−2λz

)
sin(4πx). (4.32)

This function is maximum at z = 1/(2λ) where for S = 1, t = 0.31 and x = π/8 it
is equal to ψp = 1.2 × 10−5. The magnitude of the homogeneous solution is set by
the sum of the O(ε) cross-wind transport in the Ekman and thermal boundary layers.
At t = 0.31 the maximum magnitude of ψ(2)

e + ψ
(0)
T at the surface is over five orders

of magnitude greater than the maximum of the particular solution (figure 7). Thus
the particular solution is a minute correction to ψ

(2)
i and it will be neglected. If we

write ψ(2)
e |η=0 = Ψe

1 (t) cos(2πx) + Ψe
2 (t) sin(4πx) and ψ

(0)
T |ξ=0 = ΨT

1 (t) cos(2πx), then
the homogeneous solution (and hence approximate total solution) of (4.30) is readily
obtained:

ψ
(2)
i '

2∑
n=1

[
Dn(t)

sinh(λnz)

sinh(λn)
+ En(t)

cosh(λnz)

cosh(λn)

]{
cos(2πx) (n = 1)
sin(4πx) (n = 2)

}
, (4.33)

with

En(t) = −βne−βnt
∫ t

0

eβns[Ψe
n (s) +ΨT

n (s)] ds,

Dn(t) = −[Ψe
n (t) +ΨT

n (t)]− En(t)
and λn = 2πn

√
S and βn = λn coth(λn)/2. We now have all the components of the

stream function valid to O(ε): ψ(2) ≡ ψ(0)
e + ψ

(0)
i + ε(ψ(2)

e + ψ
(2)
i + ψ

(0)
T ). The stream

function valid to O(ε) is shown in figure 8 along with the result of the numerical
experiment; it is also contoured in figure 1(g–i ). The numerical model’s output shows
a strong signal at the inertial frequency. To compare this numerical solution to
the analytical prediction, which does not include inertial oscillations, we filtered the
numerical model’s output using a Butterworth low-pass filter with a cut-off frequency
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i + ε(ψ(2)

e + ψ
(2)
i + ψ

(0)
T ). (a) Lateral structure of analytical (solid) and tempo-

rally filtered numerical solution (dots) of ψ at z = 0.98 and t = 0.31; (b) vertical structure of ψ at
the same time but at x = 0.1. (c) The time dependence of the unfiltered (dash-dotted) and filtered
(dots) numerical solutions as well as that of the analytical theory (solid) at x = 0.1 and z = 0.98.
Contrast this to classical linear SSU theory, depicted by the dashed curves in all three panels, which
predicts a purely sinusoidal lateral structure and a time independent circulation.

of 0.75f. ψ(2) and the filtered numerical solution evaluated at x = 0.1 and z = 0.98
deviate from the classical SSU solution, both being larger in magnitude and having
a time dependence (figure 8c). The offset of ψ(2) from the classical SSU solution
is evidently due to the time-independent part of the solution for ψ(2)

e , i.e. the terms
between the square brackets in (4.23). As alluded to previously, these terms arise
from horizontal and vertical advection of the momentum of the flow in the Ekman
layer. The linear decrease (yet increase in magnitude) of ψ(2) with time predicted by
the theory agrees well with the trend of the numerical model for t < 0.4. This trend
primarily results from the secular decrease in time of the vertical component of the
interior first-order relative vorticity ∂v

(0)
i /∂x occurring between x = 0 and x = 0.5,

which reduces the absolute vorticity, and thus enhances the Ekman transport. The
effect of nonlinear dynamics is also seen in the lateral variation of the stream function
at t = 0.31 (figure 8a). The most striking feature of the solution is its asymmetry
about x = 0, having sharper gradients on the side of the peak in which ∂v(0)

i /∂x is less
than zero (i.e. 0 < x < 0.5). From the relation between the vertical velocity and the
stream function, (3.4), (3.5) and (4.4), it is evident that this asymmetry leads to narrow
regions of enhanced downwelling in these anticyclonic zones and wider regions of
reduced upwelling in cyclonic zones. The difference between ψ(2) and the numerical
solution is barely distinguishable, from their vertical profiles plotted in figure 8(b).
Above z = 0.7, both of these solutions are larger in magnitude than the classical
SSU solution. This indicates that the modification of the secondary circulation by
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nonlinearities in the Ekman layer does not penetrate throughout the full depth of
the fluid, but is confined to the surface within a Prandtl depth based on the second
harmonic of the forcing, i.e. δ(2)

s = H/λ2.

4.7. O(ε1/2) and O(ε) temperature corrections

In the previous two sections we have shown how nonlinear advection of momentum
in the Ekman layer modifies the secondary circulation. We now calculate the response
of the fluid to horizontal advection of temperature by the Ekman flow. Horizontal
advection of temperature by the Ekman flow directly affects the O(ε) Ekman-layer
temperature field T (2)

e , i.e.

∂2T (2)
e

∂η2
= −2

∂ψ(0)
e

∂η

(
∂T

(0)
i

∂x

∣∣∣∣
z=1

+
∂T

(1)
T

∂x

∣∣∣∣
ξ=0

)
, (4.34)

yet also, through the flux boundary condition on the temperature field

∂T
(2)
T

∂ξ
= −γ−1/2 ∂T

(2)
e

∂η
+ γ1/2 ∂T

(0)
i

∂z
at ξ = 0, (4.35)

modulates the O(ε1/2) temperature field in the thermal boundary layer. By integrating
the O(ε) Ekman-layer temperature equation with respect to η, the Ekman-layer
temperature field can be eliminated from (4.35) yielding the boundary condition for
T

(2)
T :

∂T
(2)
T

∂ξ
=

2

γ1/2
ψ(0)
e

∣∣∣∣
η=0

(
∂T

(0)
i

∂x

∣∣∣∣
z=1

+
∂T

(1)
T

∂x

∣∣∣∣
ξ=0

)
︸ ︷︷ ︸

qadv

+γ1/2 ∂T
(0)
i

∂z
. (4.36)

This boundary condition has an elegant physical meaning. As dictated by equation
(4.34), diffusion is strong enough in the Ekman layer to exactly balance horizontal
advection of temperature by Ekman flow. For the stratified spin-up problem, relatively
cool upwelled water is advected towards the warmer downwelled water by the Ekman
flux. This would cool the Ekman layer if it were not balanced by diffusion. Diffusion
extracts heat from the thermal boundary layer to counteract this cooling tendency.
Thus qadv represents the heat flux leaving the thermal boundary layer to warm the
advectively cooled Ekman layer. The last term in (4.36) is needed to correct for the
non-zero heat flux of the interior O(1) temperature field at z = 1.

The O(ε1/2) temperature equation in the thermal boundary layer is

∂T
(2)
T

∂t
− 1

2

∂2T
(2)
T

∂ξ2
= − 1

γ1/2

(
∂ψ

(0)
i

∂x

∣∣∣∣
z=1

)
∂T

(1)
T

∂ξ
+ ξ

(
∂2ψ

(0)
i

∂x∂z

∣∣∣∣
z=1

)
∂T

(0)
T

∂ξ
. (4.37)

It is evident that the forcing on the right-hand side of (4.37) accounts for the vertical
advection of T (1)

T as well as the O(ε1/2) variation of the vertical structure of the
interior vertical velocity across the relatively thin thermal boundary layer. To solve
(4.37) subject to (4.36), T (2)

T was split into two parts: T (2)
T = Tpa + Tbc, where Tpa

solves equation (4.37) subject to the no-flux boundary condition: ∂Tpa/∂ξ = 0, and
Tbc solves the homogeneous form of equation (4.37) and satisfies (4.36); also, the
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Figure 9. Same as figure 5 but for the nonlinear SSU solution for T − Tb valid to O(ε1/2), i.e.

T (2) ≡ ε−1/2T
(0)
T + T

(1)
T + T

(0)
i + ε1/2T

(2)
T . At this order, horizontal advection of temperature in the

Ekman layer affects the solution.

simplification tanh(λ) = 0.999993 ≈ 1 was utilized. The two parts of the solutions are

Tbc = −(2t)3/2i3 erfc

(
ξ√
2t

)
(2π)2S

γ1/2
[1 + cos(4πx)]︸ ︷︷ ︸
hadvt

+4πλγ1/2S sin(2πx)

 , (4.38)

Tpa = H(ξ, t)

{
−π

2S

γ1/2
[1− cos(4πx)] + πλγ1/2S sin(2πx)

}
, (4.39)

where

H(ξ, t) =

[√
2tξ2i erfc

(
ξ√
2t

)
+ 2tξi2 erfc

(
ξ√
2t

)
+ (2t)3/2i3 erfc

(
ξ√
2t

)]
.

By solving for T (2)
T in this way, the part of the temperature field attributable to the

horizontal advection of temperature by the Ekman flow has been isolated, and is
denoted by the hadvt term in (4.38).

Within the Ekman layer, the location of the maximum and minimum lateral tem-
perature gradient for the temperature field including this O(ε1/2) correction has shifted
towards the location of the minimum wind-stress curl (figure 9a). The temperature
field of the analytical solution tends to be cooler than the numerical solution near
x = 0.25 and −0.25. This is because, up to this order of the expansion for the
temperature, the unequal strength of upwelling and downwelling that results from
the nonlinear modification of the Ekman transport is not incorporated into the dy-
namics of the temperature field. Because downwelling is enhanced near x = 0.25 and
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upwelling is reduced near x = −0.25 the temperature should increase at both of these
locations. We will now show that by adding the O(ε) correction to the temperature
field in the interior and the thermal boundary layer, this feature of the solution is
obtained.

The solution for the O(ε) correction to the interior temperature is obtained by
integrating the interior O(ε) temperature equation:

∂T
(2)
i

∂t
= −J(ψ(0)

i , T
(0)
i ) + S

∂ψ
(2)
i

∂x
+
γ

2

∂2T
(0)
i

∂z2
. (4.40)

The first term on the right-hand side of (4.40) is the convergence of the interior
advective heat flux. At the surface, where the components of this term are strongest,
these components are

−∂ψ
(0)
i

∂z

∂T
(0)
i

∂x
= −λ

3t

2
(1 + cos(4πx)), (4.41)

∂ψ
(0)
i

∂x

∂T
(0)
i

∂z
= −λ

3t

2
(1− cos(4πx)), (4.42)

where the simplification tanh(λ) = 0.999993 ≈ 1 has been used. The second term
on the right-hand side of (4.40) represents the vertical advection of the background
temperature field by the O(ε) interior vertical velocity. As stated previously, the largest
term in the correction to the Ekman-layer stream function (4.23) is the term involving
the interior vertical vorticity. Knowing this, and that at the surface ψ(2)

i = −ψ(2)
e −ψ(0)

T ,
the second term on the right-hand side (4.40) predominantly has the form

S
∂ψ

(2)
i

∂x
= −λ3t cos(4πx) + · · · . (4.43)

The effect of this term is to warm the fluid at x = 0.25 and −0.25 and thus will
improve the analytic solution of the temperature field. Notice that both components
of the interior advection terms (4.41) and (4.42) are comparable in magnitude to
(4.43) but that the sum of (4.41) and (4.42) has no lateral dependence, unlike (4.43).
Hence, interior advection does not affect the horizontal thermal gradient nor the
geostrophic down-wind flow. To see this more explicitly, consider the O(ε) equation
for the interior vertical vorticity, ζ(2)

i = ∂v
(2)
i /∂x:

∂ζ
(2)
i

∂t
= −∂ψ

(0)
i

∂z

∂ζ
(0)
i

∂x︸ ︷︷ ︸
hadv

+
∂ψ

(0)
i

∂x

∂ζ
(0)
i

∂z︸ ︷︷ ︸
vadv

− ∂
2ψ

(0)
i

∂x ∂z
ζ

(0)
i︸ ︷︷ ︸

str ζ

+
∂2ψ

(0)
i

∂x2

∂v
(0)
i

∂z︸ ︷︷ ︸
tilt

−∂
2ψ

(2)
i

∂x ∂z
+
γ

2

∂2ζ
(0)
i

∂z2
,

(4.44)

where ζ(0)
i = ∂v

(0)
i /∂x. By evaluating the nonlinear terms in (4.44) at the surface, where

they are largest in magnitude, and using the simplification tanh(λ) = 0.999993 ≈ 1,
it can be shown that horizontal advection of O(1) interior vertical vorticity, hadv,
exactly cancels tilting of the O(1) interior x-component of the vorticity to the vertical,
tilt, while vertical advection, vadv, negates the stretching of O(1) interior vertical
vorticity, str ζ. We can therefore conclude that the dynamics in the interior of the
fluid, for SSU in which the Burger number is order-one, are predominantly linear,
driven by Ekman pumping modified by nonlinearity in the Ekman layer.

The equation governing the O(ε) correction to the thermal boundary temperature
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is much more complex than (4.40):

∂T
(3)
T

∂t
− 1

2

∂2T
(3)
T

∂ξ2
= − 1

γ1/2

(
∂ψ

(0)
i

∂x

∣∣∣∣
z=1

)
∂T

(2)
T

∂ξ
− 1

γ1/2

(
∂ψ

(2)
i

∂x

∣∣∣∣
z=1

)
∂T

(0)
T

∂ξ

+
∂ψ

(0)
T

∂x

(
S − 1

γ1/2

∂T
(0)
T

∂ξ

)
− 1

γ1/2

(
∂ψ

(0)
i

∂z

∣∣∣∣
z=1

)
∂T

(1)
T

∂x

+ ξ

(
∂2ψ

(0)
i

∂x ∂z

∣∣∣∣
z=1

)
∂T

(1)
T

∂ξ
− ξ2 γ

1/2

2

(
∂3ψ

(0)
i

∂x ∂z2

∣∣∣∣
z=1

)
∂T

(0)
T

∂ξ
. (4.45)

At this order the insulating boundary condition takes the form

∂T
(3)
T

∂ξ
= −γ−1/2 ∂T

(3)
e

∂η
at ξ = 0, (4.46)

which requires knowledge of the O(ε3/2) correction to the temperature field in the
Ekman layer. T (3)

e is governed by the following equation:

∂2T (3)
e

∂η2
= −2

∂ψ(0)
e

∂η

(
∂T

(2)
T

∂x

∣∣∣∣
ξ=0

)
+ 2γη

∂ψ(0)
e

∂x

∂2T
(0)
T

∂ξ2

∣∣∣∣
ξ=0

, (4.47)

in which vertical diffusion of temperature balances horizontal and vertical advection
of the thermal-boundary-layer temperature by the Ekman flow. On account of the
no-flux boundary condition on the temperature, which makes the stratification weak
in the Ekman layer, only the O(ε1/2) vertical variation of T (0)

T across the Ekman

layer, i.e. ∂T (0)
T /∂ξ = (∂T (0)

T /∂ξ)|ξ=0 + γ1/2ε1/2η(∂2T
(0)
T /∂ξ2)|ξ=0 + · · ·, plays a role in

the vertical advection term of (4.47). Vertical integration of (4.47) yields the boundary
condition for T (3)

T :

∂T
(3)
T

∂ξ
=

2

γ1/2
ψ(0)
e |η=0

(
∂T

(2)
T

∂x

∣∣∣∣
ξ=0

)
. (4.48)

Equation (4.45) subject to (4.48) was solved numerically.
The third component of the O(ε) correction to the temperature is T (2)

e :

T (2)
e = π2Ste−η[cos(η)− sin(η)][1 + cos(4πx)]. (4.49)

We now have all of the components of the temperature field valid to O(ε): T (3) ≡ ε−1/2

T
(0)
T +T

(1)
T +T

(0)
i + ε1/2T

(2)
T + ε(T (3)

T +T
(2)
i +T (2)

e ). Plotted in figure 10 is T (3) evaluated
at t = 0.31. Comparing T (3) to T (2), it is evident that by accounting for the asymmetry
in strength of downwelling versus upwelling in the thermodynamics, the analytical
solution for the temperature field is greatly improved. T (3) plus the background
temperature field is contoured in figure 1(g–i ). The figure illustrates how the analytic
solution is able to capture the extreme features of temperature inversions and vertical
isotherms found in the numerical solution (figure 1a–c).

4.8. O(ε) corrections to the down-wind velocity

We now have all that is needed to calculate the O(ε) corrections to the down-wind
velocity in the Ekman layer, thermal boundary layer and interior. In the Ekman
layer, the O(ε) down-wind velocity can be related to the stream function using (4.15)
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Figure 10. Same as figure 5 but for the nonlinear SSU solution for T − Tb valid to O(ε), i.e.

T (3) ≡ ε−1/2T
(0)
T + T

(1)
T + T

(0)
i + ε1/2T

(2)
T + ε(T (3)

T + T
(2)
i + T (2)

e ). At this order, the unequal strength
of downwelling and upwelling affects the solution.

and (3.4):

v(2)
e = Fx +

1

2

∂3ψ(2)
e

∂η3
. (4.50)

In the thermal boundary layer, at this order the thermal-wind relation still holds:

1

γ1/2

∂v
(1)
T

∂ξ
= −∂T

(2)
T

∂x
. (4.51)

Likewise, v(2)
i satisfies the thermal-wind balance:

∂v
(2)
i

∂z
=
∂T

(2)
i

∂x
. (4.52)

After vertically integrating (4.51) and (4.52), we have all the O(ε) corrections to the
down-wind velocity. The lateral structure of the analytical solution for the down-wind
velocity to O(ε), v(2) ≡ v(0)

e + v
(0)
i + ε1/2v

(0)
T + ε(v(2)

e + v
(2)
i + v

(1)
T ), agrees well with the

numerical solution, demonstrating the steepening (flattening) of v to the right (left) of
x = 0 (figure 11). A result of this steepening/flattening is that the vertical component
of the vorticity ζ(2) = ∂v(2)/∂x, plotted in figure 12, adopts an uneven distribution, with
anticyclonic maxima being larger than cyclonic ones. This asymmetry can be seen in
the vertical profiles of ζ(2) evaluated at x = 0.25 and x = −0.25 shown in figure 12(d ),
which are not mirror images of each other except deep in the fluid. This uneven
vorticity distribution is due to the asymmetric way in which the Ekman transport is
modified in cyclonic versus anticyclonic regions. As is evident from (4.24) the Ekman
transport is reduced in regions where the vorticity is cyclonic and enhanced where it
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Figure 13. Time-series of the magnitude of the maximum anticyclonic vorticity at x = 0.25 (solid
and dash-dotted thin lines) and the maximum cyclonic vorticity at x = −0.25 (solid and dash-dotted
thick lines). The solid (dash-dotted) curves represent the nonlinear SSU (numerical) solutions. All
vorticities are calculated at z = 0.893 and are normalized by f.

is anticyclonic. For this spin-up problem, anticyclonic (cyclonic) vorticity is generated
where the Ekman transport is convergent (divergent). Since convergence of the
Ekman transport is correlated with anticyclonic vorticity, by including nonlinearities,
Ekman convergence will be stronger than divergence. This causes the anticyclonic
vorticity to grow faster than the cyclonic vorticity (see figure 13), leading to the
uneven vorticity distritubion. In figure 13, plotted with the analytic solution for the
time-series of the magnitude of the anticyclonic (cyclonic) vorticity at the location of
the minimum (maximum) wind-stress curl is the corresponding unfiltered time-series
from the numerical experiment. The trends of the unfiltered time-series are predicted
well by the theory.

Preferential acceleration of anticyclonic vorticity by Ekman pumping/suction mod-
ified by the interior vertical vorticity is a result of horizontal advection of momentum
in the Ekman layer. How does horizontal advection of temperature by Ekman flow
affect the down-wind velocity and vertical vorticity? To answer this question, the O(ε)
down-wind velocity in the thermal boundary layer associated with the horizontal
advection of temperature by Ekman flow, vhadvt, was calculated by substituting the
hadvt term of (4.38) into the thermal-wind balance (4.51) and vertically integrating,
resulting in

vhadvt = 64π3St2i4 erfc

(
ξ√
2t

)
sin(4πx), (4.53)

where

i4 erfc(ξ/
√

2t) =

∫ ∞
ξ/
√

2t

i3 erfc(s) ds.

When added to the total down-wind velocity, vhadvt steepens the lateral profile of
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v to the right of x = 0. The physical reason for why this is so is as follows. As
mentioned in § 4.7, horizontal advection of temperature by Ekman flow acts like
an effective heat flux at the top of the thermal boundary layer. For the stratified
spin-up problem, this heat flux always tends to cool the thermal boundary layer,
with maximal cooling at the locations of the maximum and minimum wind stress
where both the Ekman transport and lateral temperature gradients are largest. Where
the wind-stress curl is negative, this cooling is in opposition to warming caused by
downwelling, whereas in regions of positive wind-stress curl, the cooling augments
cooling attributable to upwelling. Since cooling associated with horizontal advection
of temperature by Ekman flow is displaced laterally from the centres of upwelling
and downwelling, the net result is to intensify (weaken) the magnitude of horizontal
density gradients, which in turn increases (reduces) the speed of the down-wind flow,
in regions of negative (positive) wind-stress curl. Notice that while this mechanism for
steepening of the down-wind velocity is of thermodynamic origin, it acts to reinforce
the asymmetric vorticity distribution of stronger anticyclonic versus cyclonic vorticity
caused by nonlinear Ekman pumping.

4.9. Breakdown of nonlinear stratified spin-up theory

As evident in figure 13, the numerical and analytical solutions of the vertical vorticity
begin to diverge after t ∼ 0.4. The same is true for the stream function, i.e. see
figure 8(c), and the temperature field (compare figure 1c and figure 1i ). Since the
analytical solutions for all of the flow variables begin to fail after t ∼ 0.4, it can
be concluded that this behaviour signifies the limitation of the regular perturbation
expansion to O(ε). To extend the time-period of validity for the expansion, the
expansion could be carried out to higher orders in the Rossby number. To illustrate
this point, we have calculated the stream function to O(ε3/2): ψ(3) ≡ ψ(0)

e + ψ
(0)
i +

ε(ψ(2)
e + ψ

(2)
i + ψ

(0)
T ) + ε3/2(ψ(3)

e + ψ
(3)
i + ψ

(1)
T ). The details of this calculation have

been left out for brevity. The time-series of the vertical velocity at x = −0.218
demonstrates the anticipated result that the vertical velocity expanded to O(ε3/2) does
better at predicting the temporal behaviour of the numerical solution with inertial
oscillations filtered out (figure 14a). This is not true at x = 0.218 (figure 14b), where
the vertical velocity of the numerical solution diverges rapidly from both the O(ε)
and O(ε3/2) analytic solutions towards the end of the time-series. We will show in
the next section that this strong downwelling at x = 0.218 is a manifestation of a
hydrodynamic instability that arises as the potential vorticity of the fluid becomes
negative. Evidently, nonlinear stratified spin-up theory, regardless of to what order
of Rossby number the regular perturbation expansion is truncated at, is incapable of
capturing the dynamics of a rapidly growing instability. Hence, the onset of instability
marks the true breakdown of the theory.

4.10. Generation of negative potential vorticity and symmetric instability
for late times

The spatial structure of the hydrodynamic instability responsible for the strong
downwelling evident in the time-series shown in figure 14 is highlighted by the
deviation of the stream function from the nonlinear stratified spin-up solution ψ(3)

(figure 15). Two such instabilities form, and are centred about the strongest horizontal
thermal gradients of the domain. Although the instabilities form where the static
stability is unstable, they do not form where the density inversions are strongest,
where gravitational instability is most likely to occur. The shaded area in the figure
denotes a region where the absolute vorticity is negative and hence is a region prone
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Figure 14. Time-series of the nonlinear SSU solution for vertical velocity valid to O(ε3/2), i.e.
−∂ψ(3)/∂x, and O(ε), i.e. −∂ψ(2)/∂x (solid and dashed lines respectively), along with the unfiltered
(dash-dotted) and filtered (dots) numerical solutions evaluated at z = 0.953 and x = −0.218 (a)
and x = 0.218 (b).
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Figure 15. Spatial structure of symmetric instability. The numerical solution for the temperature
(solid thick) and the deviation of the stream function from the nonlinear SSU solution (thin solid
and dashed, where dashed contours indicate negative values) for t = 0.82. Shaded area indicates the
region where the absolute vorticity is negative.
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Figure 16. Potential vorticity and its constituent normalized by fN2/g for t = 0.82. (a) The total
potential vorticity. (b) The horiz term of the potential vorticity. (c) The vert term of the potential
vorticity. See equation (4.54) for the definitions of the terms horiz and vert. Negative regions are
enclosed by the thick black contour. Isotherms are contoured in white.

to inertial instability. Notice that the instabilities do not originate from this region
either. This indicates that the disturbances found near the minimum wind-stress curl
are neither gravitational nor inertial instabilities. Insight into the nature of inviscid
two-dimensional instabilities occurring in rotating stratified fluids can be gained by
computing the potential vorticity:

Π∗ = α

(
f +

∂v∗

∂x∗

)
∂T ∗

∂z∗︸ ︷︷ ︸
vert

−α∂v
∗

∂z∗
∂T ∗

∂x∗︸ ︷︷ ︸
horiz

, (4.54)

where the superscript ∗ denotes a dimensional variable and the temperature in (4.54)
includes the background temperature field. Hoskins (1974) showed that the necessary
condition for instability for an inviscid rotating stratified fluid with no variation in
one spatial dimension is that the potential vorticity must be negative. The potential
vorticity can be made negative in several ways. The vert term of the potential
vorticity is negative if either the absolute vorticity is negative or the stratification is
unstable. As mentioned before, if the absolute vorticity is less than zero then the fluid
is prone to inertial instability, while unstable density gradients lead to gravitational
instability. The horiz term of the potential vorticity for a flow in a thermal-wind
balance is −(αg/f)(∂T ∗/∂x∗)2, which is always negative and large in magnitude for
intense thermal gradients. If the potential vorticity is made negative predominantly
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by the horiz term, the ensuing disturbance is classified as symmetric instability. The
most extremely negative areas of the total potential vorticity are concentrated near the
sharpest density gradients found at x = 0.22 and 0.28 (figure 16a). Not surprisingly,
the source of these extremely negative areas is the horiz term, which is plotted in
figure 16(b). The vert term of the potential vorticity is displayed in figure 16(c)
and is negative where there are density inversions and where the absolute vorticity
is negative. At the location of the minimum potential vorticity, the vert term is
negative but only constitutes 1% of the total. Since the potential vorticity is made
negative predominately by the horiz term, we can conclude that the overturning cells
shown in figure 15 are manifestations of symmetric instability. Having classified the
disturbance, the next step will be to investigate the life cycle of the stratified spin-up
process after the onset of symmetric instability.

5. Conclusions
Using both a weakly nonlinear analytic theory and direct numerical simulation,

we have thoroughly documented all the processes involved during the spin-up of
a rotating stratified fluid driven by moderately strong wind-stress forcing for time
periods of order a homogeneous spin-up time. By moderately strong wind stress
forcing we refer to winds with horizontal length scales of order the oceanic Rossby
radius of deformation (making the Burger number S order-one) and of sufficient
magnitude such that the Rossby number based on the wind forcing ε = τo/ρof

2Lδe
is not negligible or, more specifically, when the Rossby number is proportional to the
square root of the Ekman number: ε ∝ E1/2. We have also implemented a heat-flux
rather than fixed-temperature boundary condition on the temperature field, which is
more realistic for the ocean. To emphasize the role of mechanical versus buoyancy
forcing on the spin-up process, a zero-heat-flux boundary condition was used. Our
analysis reveals that the spin-up process, subject to the criteria listed above, differs
from the classic linear view of SSU mainly in two ways: first, Ekman transport, which
drives SSU, is not merely proportional to the wind stress, but is distorted by the flow
generated during SSU, and second, strict application of the zero-heat-flux boundary
condition leads to the growth of a diffusive thermal boundary layer of thickness
δT = HE1/4 in which the stratification is reduced, the effects of horizontal advection
of temperature by the flow in the Ekman layer are felt, and in which the secondary
circulation and down-wind flow are modified.

The Ekman transport valid to O(ε) (equation (4.24)) differs from the classic formula
by three terms. The first term reflects the fact that, as first pointed out by Stern (1965)
and Niiler (1969), the Ekman transport varies inversely with the absolute vorticity
rather than the planetary vorticity. As vertical relative vorticity is generated during
the spin-up of the fluid by the secondary circulation, the vertical shear of the flow in
the Ekman layer tilts lines of absolute vorticity away from the vertical to replenish
frictional twisting of vorticity. Because the shear tilts absolute rather than planetary
vorticity, the Ekman transport is enhanced in regions of anticyclonic vorticity so that
the tilting of the diminished absolute vorticity can balance the dissipation. This effect
causes Ekman pumping to be stronger than Ekman suction because it is correlated
with anticyclonic vorticity. The second term in the Ekman transport formula is steady
in time and is attributable to vertical and horizontal advection of the momentum of
the flow in the Ekman layer. Although the secular growth of the vertical vorticity term
eventually overwhelms the effect of this steady term, for early times the steady term
dominates, again enhancing Ekman pumping and reducing Ekman suction. The flow
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in the Ekman layer is driven by stress at the surface of the fluid. For wind-driven SSU,
wind shear provides this stress. During SSU, the secondary circulation accelerates a
geostrophic flow with shear in the same direction as the wind stress. At the surface,
this geostrophic shear partially compensates for the wind shear and therefore reduces
the force driving the cross-wind flow in the Ekman layer. The amount by which
Ekman transport is reduced by this mechanism is given by the last term in (4.24).

As the Ekman transport is distorted by the flow generated during SSU, the interior
secondary circulation adjusts accordingly. By the vorticity effect, interior downwelling
is stronger than upwelling, which, through the process of vortex stretching, favours
the generation of anticyclonic over cyclonic vorticity. Hence, a feedback mechanism
is apparent: anticyclonic vorticity enhances Ekman pumping which intensifies vor-
tex squashing and strengthens anticyclonic vorticity, while cyclonic vorticity reduces
Ekman suction which weakens vortex stretching and diminishes cyclonic vorticity.
Through this mechanism the initial sinusoidal profile of the down-wind velocity is
steepened, see figure 11. Notice that this steepening does not rely on nonlinear advec-
tion in the interior. This contrasts with a model for nonlinear barotropic spin-down
proposed by Zavala Sansón & van Heijst (2000) in which stretching and horizon-
tal advection of interior relative vertical vorticity by frictionally induced secondary
circulation causes cyclonic vorticies to spin down faster than anticyclonic vorticies.
While these nonlinear vorticity generation mechanisms are present in stratified spin-
up, vertical advection and tilting of the x-component of the vorticity to the vertical
(vorticity generation mechanisms which require vertical variation of the geostrophic
flow and hence are absent in barotropic spin-down) are active in SSU and nearly can-
cel stretching and horizontal advection of interior vertical vorticity when the Burger
number is of order-one. On account of this, we conclude that the dynamics in the
interior of the fluid, at least during the early stages of SSU, are predominantly linear,
driven by Ekman pumping modified by nonlinearity in the Ekman layer.

At the surface and base of the fluid the initial stratification does not satisfy the
zero-heat-flux boundary condition. Consequently, near these horizontal boundaries,
diffusion reduces the stratification, creating thermal boundary layers which, for time
periods of order a homogeneous spin-up time, have a thickness δT = HE1/4. In
this way the fluid naturally generates a surface mixed layer E−1/4 times thicker than
the Ekman layer embedded within it. In the Ekman layer, cross-wind flow advects
cool upwelled water towards warmer downwelled water. This horizontal advection of
temperature, which tends to cool the fluid, is balanced by vertical diffusion of heat.
Diffusion in the Ekman layer extracts heat from the thermal boundary layer beneath
so as to counteract this cooling tendency. The flux of heat extracted from the top of
the thermal boundary layer by this mechanism (in dimensional units, i.e. W m−2) is

QADV∗ = ρocpM
∂T ∗s
∂x∗

, (5.1)

where the superscript ∗ denotes a dimensional variable, cp is the specific heat of water,
M is the Ekman transport, and T ∗s is the sea-surface temperature. The thermodynamic
response of the thermal boundary layer to the heat flux (5.1) is nearly identical to
that of surface cooling imposed by an external source (say evaporative cooling for
example), i.e. its signal diffuses down into the fluid. The difference being due to the
dependence of (5.1) on the sea-surface temperature, QADV∗ relies on the internal
dynamics of the fluid which is determined by the SSU process. This coupling between
the internal dynamics of the fluid and the heat-flux boundary condition leads to an
asymmetry in the magnitude of lateral density gradients in regions of downwelling
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versus upwelling. In regions of downwelling (upwelling) the cooling associated with
(5.1) counteracts (augments) the warming (cooling) driven by the downwelling (up-
welling). Since the maximal cooling of QADV* is displaced horizontally from the
centres of upwelling and downwelling, the cooling enhances (reduces) the magnitude
of lateral density gradients in regions of downwelling (upwelling). Down-wind flow
in the thermal boundary layer is geostrophic; therefore, following the thermal-wind
relation, the maximum magnitudes of the geostrophic shear as well as the down-wind
flow are shifted towards the centre of downwelling on account of QADV*. This
thermodynamic process makes anticyclonic vorticity stronger than cyclonic vorticity,
similar to the result caused by nonlinear Ekman pumping. At the same time, the
increased horizontal temperature gradients and ensuing geostrophic shear in the re-
gion of Ekman convergence reduces the potential vorticity to negative values and
conditions the fluid for symmetric instability. Onset of symmetric instability marks
the breakdown of nonlinear SSU theory and the beginning of the next phase in the
stratified spin-up life cycle during which overturning instabilities and frontogenesis
are prominent. We are currently investigating this later phase.

The effects described in this paper of the modification of the SSU process by
nonlinear corrections to the Ekman pumping occur most rapidly for large Rossby
and Burger numbers. The f−2 dependence of both of these numbers suggests that
the low latitudes are particularly susceptible to the dynamics of nonlinear SSU. We
present an example where this appears to be the case. In the tropical Pacific off the
coast of Central America, the ocean is strongly forced by wind jets funnelled through
gaps in the mountain ranges found in the region, Kessler (2002). Nine-month-averaged
NSCAT scatterometer winds (Milliff & Morzel 2001), as well as in situ shipboard
wind data (Trasviña et al. 1995), show that the jets force the ocean with nearly equal
amounts of positive and negative wind-stress curl. Despite the symmetry of the forcing,
the ocean’s response is quite asymmetrical, characterized by intense anticyclonic warm-
core eddies generated to the right of the axis of the wind jet and weaker cyclonic eddies
to the left, (Barton et al. 1993; Trasviña et al. 1995). Based on the nine-month-averaged
scatterometer winds (Milliff & Morzel 2001), the wind jets yield wind-stress curls of
order 3.5× 10−7 N m−3. Using an Ekman depth δe of 25 m (Kessler 2002), the Rossby
number of this flow is estimated to be: ε = 3.5 × 10−7 N m−3/[(1024 kg m−3)(3.5 ×
10−5 s−1)2(25 m)] = O(0.01). This calculation is based on averaged winds; Rossby
numbers for individual wind events are likely to be much larger. The width of the
wind jet (200 km) is determined by the size of the gap in the mountain range through
which it flows (Trasviña et al. 1995). The Rossby radius of deformation in this part
of the Pacific ocean is ∼ 200 km, and therefore the Burger number S of these flows is
order-one. Since these values of ε and S are of the same order as the parameters used
in this study (ε = 0.02 and S = 1) we hypothesize that the dominance of anticyclonic
over cyclonic eddies in this region is attributable to our proposed feedback mechanism
in which anticyclonic vorticity enhances Ekman pumping, intensifies vortex squashing,
and thus preferentially generates anticyclonic vorticity.

This work was supported by the National Science Foundation, Physical Oceanog-
raphy Program.
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